

## SPIE Commercial + Scientific Sensing and Imaging SPIE DCS 2016



### Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

Wei Lu, Michael A. Krainak, Guan Yang,
Xiaoli Sun, Scott Merritt,
NASA Goddard Space Flight Center, Greenbelt, MD USA 20771;



### Photon-counting detectors for space-based applications

#### **AGENDA**



- I. NASA applications/requirements
- II. Silicon Geiger-mode avalanche photodiode array
- III. Mercury Cadmium Telluride (HgCdTe) linear-mode avalanche photodiode array
- IV. Summary



## NASA-GSFC Single-Photon Counting Detectors NASA Goals for Near-Earth Free-Space Communication



| Photon-counting wavelengths | Favor 1550 nm, exploring 850 nm            |
|-----------------------------|--------------------------------------------|
| Detection efficiency:       | > 10%                                      |
| Detector size:              | > 200 µm diameter                          |
| 2-D arrays                  | Act as single detector w/high speed output |
| Dark counts:                | < 100 kcps                                 |
| Maximum Count Rate:         | >1 Gbps (through multiplexing)             |
| Electrical bandwidth:       | >1 GHz                                     |
| Linearity:                  | > 98% fit                                  |
| Timing jitter:              | < 100 ps                                   |
| Afterpulsing                | < 1% in 1 μs                               |
|                             |                                            |
| Operating temperature:      | prefer thermo-electric cooler range        |
| Space-qualifiable:          | rad-hard, reliable, overlight protection   |

April 17, 2016 SPIE DCS 2016 3



### Sensl Silicon APD Array





Detector: Sensl MicroFM-SMA-

10020

Lot # 131218

Active Area: 1mm x 1mm

# of Cells: 1144

Fill Factor: 48%

Biased at -32V unless noted otherwise

NOTE: New "Red" version available with higher near-IR QE. NOT used in these tests.



# Commercial transmitter 850 nm VCSEL (4 x 28G)



### **FINISAR**



Optical Transceivers

100GBASE-SR4 and OT

FTLC9141SENM



| Distance:                       | 100 m                                       |
|---------------------------------|---------------------------------------------|
| Data Rate (max):                | 112 Gb/s                                    |
| Protocol:                       | OTN OTU4 Compliant, 100G Ethernet Compliant |
| Low End Case Temperature (°C):  | -5                                          |
| High End Case Temperature (°C): | 75                                          |
| Diagnostics:                    | Digital                                     |
| Transmitter:                    | 4x VCSEL Array                              |
| Receiver:                       | PIN                                         |
| Voltage Supply:                 | 3.3                                         |
| Connector:                      | MPO (MTP12)                                 |
| Wavelength:                     | 850nm Band                                  |
|                                 |                                             |

We used 10G version in this work.



### Detected photon number discrimination









$$\lambda = 0.8$$

$$\lambda = 1.7$$

$$\lambda = 3.2$$

Free-space optical communication bench test diagram for the Sensl APD arrays using coincidence detection.



Goddard Space Flight Center



# Sensl APD array Communication performance (@850 nm)





RZ-OOK 100 Mbps data rate with PRBS=2^31-1



# Sensl APD array Communication performance with coincidence detection at various rates







### Sensl APD array Ranging performance







| # ph per pulse     | 4        | 2        | 1        | 0.50     | 0.25     | 0.125    |
|--------------------|----------|----------|----------|----------|----------|----------|
| Modified Allan     | 3.48E-12 | 3.97E-12 | 2.49E-12 | 4.06E-12 | 5.54E-12 | 5.49E-12 |
| Deviation          |          |          |          |          |          |          |
| Ranging Error (mm) | 1.0      | 1.2      | 0.7      | 1.2      | 1.7      | 1.6      |



### DRS Inc. HgCdTe APD







single pixel consisting of 4 mesas with 11 V

3 pixels



# DRS HgCdTe APD Intensity Pulse Height Distribution





Photoelectron number (pulse intensity)



## Communication performance (@1550 nm) test with DRS HgCdTe APD receiver







## DRS HgCdTe APD experimental BER data

from a single pixel





RZ-OOK 50 Mbps data rate with PRBS=2^31-1

DRS HgCdTe APD Ranging Experiment from a single pixel





Goddard Space Flight Center

| # ph per pulse     | 4        | 2        | 1        | 0.50     | 0.25     | 0.125    |
|--------------------|----------|----------|----------|----------|----------|----------|
| Modified Allan     | 3.48E-12 | 3.97E-12 | 2.49E-12 | 4.06E-12 | 5.54E-12 | 5.49E-12 |
| Deviation          |          |          |          |          |          |          |
| Ranging Error (mm) | 1.0      | 1.2      | 0.7      | 1.2      | 1.7      | 1.6      |

RZ-OOK 10 Mbps data rate with RZ'1111



#### **SUMMARY**



16

- I. Demonstrated photon-counting communication using three ideas:
  - 1) use an array of photon-counting elements wired together as a single detector
  - 2) use a high pass filter, ideally on each array element (or on the array output to only preserve the information-bearing portion of the waveform)\*
  - 3) depending on the photon-counting element excess noise, use either a "two-photon" intensity threshold level or an AND-gate with coincidence detection.
- \* Pavlov, N. "Silicon Photomultiplier and Readout Method" USPTO Patent Application Publication, No. US2013/0099100 A1 (2013).

#### II. Commercial components

Commercial 850 nm VCSEL transmitters and silicon APD Geiger-mode arrays provide a viable path to low-cost high-rate (500 Mbps) free-space optical communication links.

#### III. HgCdTe APD

Demonstrated excellent communication performance at 50 Mbps @1550 nm with single-pixel HgCdTe APD.

IV. Demonstrated millimeter level accuracy of Photon Counting Ranging over Laser Communication Data Link

#### IV. Future

>1 Gbps with single array (in InGaAs) and multi-Gbps with WDM should be viable.